Как работает генератор случайных чисел. Что такое генератор случайных чисел

Случалось ли вам когда-нибудь проверять утверждение, что из 10 запусков рулетки 5 раз выпадает чётное число? Или, быть может, вы участвовали несколько раз в розыгрышах лотерей и даже сумели выиграть? Если принять, что все результаты действительно случайны, то можно говорить о вероятности наступления того или иного события.

Перефразировав последнее утверждение, повторим слова людей, не один месяц участвующих в мероприятиях со случайным результатом: работает всемогущий рандом.

Так каким же образом проверить, является ли принцип распределения случайным? С этой задачей справится генератор случайных чисел. Главный его плюс в том, что он работает в режиме онлайн, а значит очень быстр и не зависит после загрузки от наличия интернет-соединения.

Как работает генератор случайных чисел

Для описания работы не потребуется много букв, всё очень просто: нужно выбрать минимальное и максимальное возможное число, ввести количество генерируемых значений, по необходимости отметить галочку «Исключить повторы», предотвращающую появление чисел, которые уже были, и нажать кнопку генерации. После этого, каждое очередное нажатие кнопки будет выдавать новые варианты распределения.

Для чего это может понадобиться? Например, для получения счастливых чисел в лотереи или рулетке. Помимо этого, генератор псевдослучайных чисел в состоянии эмулировать бочонки лото или подбрасывание монетки для конкурса - орёл и решка представляются нулём или единицей. Но основная примечательность в том, что после загрузки страницы вам не потребуется подключение к интернету - код написан на JavaScript и выполняется на стороне пользователя, в его браузере.

Тестирование работы данного онлайн генератора порой давало весьма интересные результаты: использование цифр 0 и 1, при 10 вариантах, не так уж редко выдавало распределение в соотношении 7 к 3, или даже 6 одинаковых цифр подряд.

Для чего ещё, кроме лото и примеров выше, может быть полезен рандом для распределения цифр? Хотя бы для игры в Угадайку. Наверняка в такую играли в детстве: ведущий загадывает число от 1 до 100, а другие пытаются его отгадать. Применительно к этому генератору, в роли ведущего выступаете вы, а компьютер пытается отгадать, что же загадано.

Можно даже играть в Морской бой, получив сразу группу чисел в диапазоне от 0 до 99. При этом, в качестве букв (которые указываются по горизонтали) используется старший разряд числа - 0…9 это а…и, цифры младшего разряда в таком случае заменяют диапазон 1…10, то есть просто добавляется единица. Возможно, сейчас данный подход кажется не очень наглядным, но это дело привычки.

Ещё один интересный способ использования - проверить свою интуицию. Вы пытаетесь предсказать, какие числа (по одному или группой) выдаст генератор, нажимаете кнопку и проверяете, насколько были близки к правильному результату. Кто знает, вдруг после нескольких попыток вы сможете безошибочно предугадывать итог?

Но следует учитывать, что генератор случ чисел так называется не зря. Существующие на сегодня методы не в состоянии обеспечивать действительно случайное значение - оно зависит от множества факторов, среди которых может быть предыдущее число, текущее время, содержимое той или иной ячейки памяти и прочие данные. Но для бытовых нужд их функционала, как правило, хватает на 100%.

Что же, надеюсь, что вы найдёте более обширное применение генератору, нежели описанные здесь варианты. А, быть может, даже сумеете предложить хорошую идею для расширения имеющегося функционала. В конце концов, именно самые невероятные мысли со временем превращались из расплывчатого замысла в реальное воплощение.

Каждый человек, независимо от степени азартности и авантюризма, так или иначе, сталкивался с таким понятием, как лотерея. И лишь немногие спрашивали себя, каким образом происходит случайное распределение выигрышных комбинаций цифр. Как выпадает та или иная цифра? Что заставляет чашу весов опуститься в сторону победителя? Рассмотрим это детально.

Все мы хотя бы раз в своей жизни сталкивались с таким явлением, как лотерея. Но мало кто задумывался или представлял себе, как именно работает данная система, что такое генератор чисел для лотереи и каков его принцип действия.

Понятие генератора чисел

Генератор случайных чисел для лотереи - некое устройство или заданная программа, которая выдает номера, находящиеся на выделенном интервале, в случайном (правильнее сказать, псевдослучайном) порядке. Для определенного вида лотерей, к примеру, "Спортлото", генерируются номера, находящиеся на интервале от 1 до 49.

Выделяют генератор чисел для лотереи аппаратный и программный. В любом языке программирования присутствует функция RAND(), именно она отвечает за выдачу псевдослучайных цифр в заданном диапазоне.

Почему утверждается, что выданные результаты псевдослучайны и что генератор чисел для лотереи работает именно по такому принципу?

Функция RAND: понятие и способ использования

Функция RAND() - это программа или, к примеру, аппарат с детерминированным алгоритмом, который при одинаковых заданных условиях будет показывать постоянно одни и те же результаты. Но для того чтобы соблюдались условия истинной случайной последовательности, не должно быть никакой зависимости от начальных условий или параметров. Поэтому, чтобы избежать подобных случаев, дополнительно используется специальная процедура RANDOMIZE, которая убирает предсказуемость начальных условий, делая их случайными.

Кроме уже известного нам принципа генерации, используется еще один вид генератора лотереи. Рассмотрим его ниже.

Генератор цифр 6 из 45

Генератор чисел для лотереи 6 из 45 - программа, которая используется с целью получения счастливых чисел. При этом есть возможность задать дополнительные параметры для получения более качественного результата.

Можно указать критерии отбора, например:

  • Количество выигрышных номеров, которые нужно получить в конечном результате.
  • Указать диапазон номеров, в котором будет проводиться отбор.
  • Сортировку цифр возможно задать как по возрастанию, так и по убыванию.
  • Выбрать тип и способ разделения.
  • Исключить повторы или оставить выборку неотсортированной.
  • Скопировать ссылку на полученный результат и разместить её на странице в социальных сетях с целью публикации результата.

Генератор номеров: инструкция к пользованию

  • По умолчанию установлен вывод пяти номеров. Поменяв настройки, можно получить до 250 случайных выигрышных комбинаций.
  • Задаем диапазон, стандартно указывается от 0 до 36, вы же можете указать максимально до 9 999 999 999.
  • Выбираем необходимую к нашему виду лотереи сортировку: по возрастанию, по убыванию или расположение цифр в случайном порядке.
  • Следующим шагом указываем, как будут отделяться цифры друг от друга - запятой, точкой, пробелом, точкой с запятой.
  • Избавляемся от случайных повторений, возникших в процессе выборки.

Таким образом, мы получаем качественно отобранные числа, которые могут быть самыми счастливыми и выигрышными.

  • Перевод

Представьте, что сейчас 1995 год и вы собираетесь совершить первую покупку в онлайне. Вы открываете браузер Netscape и прихлёбываете из чашечки кофе, пока главная страница медленно загружается. Ваш путь лежит на Amazon.com - новый онлайн-магазинчик, о которой рассказал вам друг. Когда наступает этап оформить покупку и ввести персональные данные, адрес в браузере меняется с «http» на «https». Это сигнализирует о том, что компьютер установил зашифрованное соединение с сервером Amazon. Теперь можно передавать серверу данные кредитной карты, не опасаясь мошенников, которые хотят перехватить информацию.

К сожалению, ваша первая покупка в интернете была скомпрометирована с самого начала: вскоре обнаружится, что якобы безопасный протокол, по которому браузер установил соединение, на самом деле не очень защищён.

Проблема в том, что секретные ключи, которые использовал Netscape , были недостаточно случайными. Их длина составляла всего 40 бит, что означает около триллиона возможных комбинаций. Это кажется большим числом, но хакерам удалось взломать эти коды, даже на компьютерах 1990-х годов, примерно за 30 часов. Якобы случайное число, которое Netscape использовал для генерации секретного ключа, базировалось всего на трёх значениях: времени суток, идентификационном номере процесса и идентификационном номере материнского процесса - все они являются предсказуемыми. Из-за этого злоумышленник имел возможность сократить количество вариантов для перебора и найти нужный ключ гораздо раньше, чем предполагали в Netscape.

Программисты Netscape с радостью бы использовали полностью случайные числа для генерации ключа, но не знали, как их получить. Причина в том, что цифровые компьютеры всегда находятся в точно определённом состоянии, которое меняется только при поступлении определённой команды от программы. Самое лучшее, что вы можете сделать - эмулировать случайность, генерируя так называемые псевдослучайные числа с помощью специальной математической функции. Набор таких чисел на первый взгляд выглядит полностью случайным, но кто-нибудь другой с помощью такой же процедуры может легко сгенерировать в точности такие же числа, так что обычно они плохо подходят для шифрования.

Исследователям удалось изобрести генераторы псевдослучайных чисел, которые признаны криптографически надёжными. Но их нужно запускать с качественного случайного начального значения (random seed), иначе они всегда сгенерируют один и тот же набор чисел. И для этого начального значения вам нужно нечто такое, что действительно невозможно подобрать или предсказать.

К счастью, несложно получить действительно непредсказумые значения, используя хаотическую вселенную, которая со всех сторон окружает строго детерминированный мир компьютерных битов. Но как именно это сделать?

В течение последних лет в онлайне работает источник случайных чисел под названием Lavarand . Он был создан в 1996 году для автоматической генерации случайных значений путём обработки фотографий декоративного светильника - лавовой лампы, которая непредсказуемым образом меняет облик каждую секунду. С тех пор случайными значениями из этого источника воспользовались более миллиона раз.

Есть и более изощрённые аппаратные генераторы случайных чисел, которые регистрируют квантовые эффекты, например, удары фотонов в зеркало. Вы можете на самом обычном компьютере получить случайные числа путём регистрации непредсказуемых событий, таких как точное время нажатия на кнопки клавиатуры. Но чтобы получить большое количество таких случайных значений, придётся нажать немало кнопок.

Мы с коллегами в компании Intel решили, что нужно сделать более простой способ. Вот почему уже более десяти лет многие из чипсетов нашего производства содержат аналоговый аппаратный генератор случайных чисел. Проблема в том, что его аналоговый контур впустую расходует энергию. Вдобавок, трудно сохранить работоспособность этой аналоговой схемы по мере совершенствования техпроцесса по производству микросхем и их миниатюризации. Поэтому сейчас мы разработали новую и полностью цифровую систему, которая позволяет микропроцессору генерировать обильный поток случайных значений без этих проблем. Скоро этот новый цифровой генератор случайных чисел придёт к вам вместе с новым процессором.

Первая попытка Intel сделать лучший генератор случайных чисел на обычных ПК датируется 1999-м годом, когда компания Intel представила компонент Firmware Hub для чипсетов. Генератор случайных чисел в этом чипе (PDF) представляет собой аналоговый дизайн на базе кольцевого осциллятора, который регистрирует тепловой шум с резисторов, усиливает его и использует результирующий сигнал для изменения периода относительно медленного генератора тактовых импульсов. На каждый непредсказуемый «тик» этого медленного генератора микросхема накладывала частоту колебаний второго, быстрого генератора, который регулярно меняет своё значение между двумя бинарными состояниями: 0 и 1. В результате получается непредсказуемая последовательность нулей и единиц.

Проблема в том, что кольцевой осциллятор, который занимается усилением теплового сигнала, потребляет слишком много энергии - и он работает постоянно, независимо от того, нужны или нет компьютеру случайные числа в данный момент. Эти аналоговые компоненты также доставляют неудобства каждый раз, когда компания меняет техпроцесс производства микросхем. Каждые несколько лет компания модернизирует производственные линии, чтобы делать микросхемы в более миниатюрном масштабе. И каждый раз этот аналоговый фрагмент нужно по-новому калибровать и тестировать - эта сложная и кропотливая работа стала настоящей головной болью.

Вот почему в 2008 году Intel принялась за разработку генератора случайных чисел, который работает исключительно на цифровой основе. Исследователи компании в Хиллсборо (Орегон, США), совместно с инженерами Design Lab в Бангалоре (Индия) начали изучать ключевую проблему - как получить случайный поток битов без использования аналоговых схем.

Забавно, но предложенное ими решение нарушает основное правило цифрового дизайна, что схема должна всегда быть в определённом положении и возвращать либо логический 0, либо 1. Конечно, цифровой элемент может проводить краткосрочные промежутки времени в неопределённом положении, переключаясь между этими двумя значениями. Однако, он должен работать предельно чётко и никогда не должен колебаться между ними, иначе это вызовет задержки или даже сбой в системе. В нашем же генераторе случайных битов колебания являются фичей, а не багом .

Наш предыдущий аналоговый генератор был способен выдавать только пару сотен килобит случайных чисел в секунду, в то время как новый генерирует их потоком около 3 Гб/с. Он начинает работу, собирая практически случайные значения двух инвертеров блоками по 512 бит. В дальнейшем эти блоки разбиваются на пары 256-битных чисел. Конечно, если оригинальные 512 бит не полностью случайны, эти 256-битные числа тоже не будут полностью случайными. Но их можно математически скомбинировать таким образом, чтобы получить 256-битное число, близкое к идеальному.


ТРИ УРОВНЯ ЧИСЕЛ: Генератор случайных чисел Intel Bull Mountain предотвращает любые варианты предсказуемости с помощью трёхступенчатого процесса. Сначала цифровой контур генерирует поток случайных битов. Потом «нормализатор» (conditioner) генерирует на основе этого потока хорошие случайные начальные значения (random seeds). На третьем этапе генератор псевдослучайных чисел выдаёт поток цифр для использования в программном обеспечении.

Всё это лучше показано на простой иллюстрации. Предположите на секунду, что генератор случайных битов выдаёт 8-битные комбинации, то есть как бы числа в диапазоне от 0 до 255. Предположите также, что эти 8-битные числа не полностью случайны. Теперь представьте, что, к примеру, какой-то неуловимый изъян в цепи смещает выдаваемые значения в нижнюю часть диапазона. На первый взгляд, поток случайных чисел кажется хорошим, но если вы обработаете миллионы значений, то заметите, что числа из верхней части диапазона встречаются немножко реже, чем числа из нижней части.

Одно из возможных решений этой проблемы простое: всегда берите пару 8-битных чисел, перемножайте их, а потом отбрасывайте верхние восемь бит из получившегося 16-битного числа. Такая процедура устранит перекос практически целиком.

Bull Mountain не работает с 8-битными числами: он работает, как уже было сказано, с 256-битными числами. И он их не перемножает, а производит более сложные криптографические операции. Но основная идея та же самая. Вы можете представить этот этап как «нормализацию» по устранению тех отклонений от случайного распределения чисел, которое может возникнуть в схеме с двумя инвертерами.

Нам действительно хочется хорошо спать по ночам, так что спроектировали дополнительную схему, которая проводит тестирование потоков 256-битных чисел, которые поступают в «нормализатор», чтобы они не были слишком смещёнными в какую-то сторону. Если такое обнаруживается, мы помечаем его как бракованный и не соответствующий стандартам. Таким образом, операции производятся только с качественными парами чисел.

Гарантированной случайности недостаточно, если случайные значения не выдаются достаточно быстро, чтобы соответствовать стандартам. Хотя аппаратный контур генерирует поток значительно быстрее, чем его предшественники, этого всё ещё недостаточно для некоторых современных задач. Чтобы Bull Mountain мог выдавать случайные числа так же быстро, как выдают поток программные генераторы псевдослучайных чисел, но при этом сохранять высокое качество случайных чисел, мы добавили ещё один уровень в схему. Здесь 256-битные случайные числа используются как криптографически надёжные начальные значения (random seeds) для генерации большого количества псевдослучайных 128-битных чисел. Поскольку 256-битные числа поступают с частотой 3 ГГц, то гарантируется достаточное количество материала для быстрой генерации криптографических ключей.

Новая инструкция под названием RdRand даёт возможность программе, которой нужны случайные числа, обратиться с запросом к аппаратному обеспечению, которое их производит. Созданная для 64-битных процессоров Intel, инструкция RdRand - это ключ к генератору Bull Mountain. Она извлекает 16-, 32- или 64-битные случайные значения и помещает их в регистр, доступный для программы. Инструкция RdRand была открыта для публики около года назад, и первым процессором Intel, который будет поддерживать её, станет Ivy Bridge. Новый чипсет работает на 37% быстрее, чем его предшественник, а размер его минимальных элементов уменьшен с 32 до 22 нанометров. Общее увеличение производительности хорошо сочетается с потребностями нашего генератора случайных чисел.

Хотя лавовые лампы выглядят круто , они впишутся не в каждый интерьер. Мы думаем, что наш подход к генерации случайных чисел, напротив, найдёт самое универсальное применение.

Как уже было упомянуто, регистрация точного времени нажатия на клавиши использовалась как удобный источник случайных стартовых значений для генераторов в прошлом. Для тех же целей использовали передвижения мыши и даже скорость поиска секторов на жёстком диске. Но такие события не всегда дают вам достаточное количество случайных битов, и при определённом времени измерений эти биты становятся предсказуемыми. Хуже того, поскольку мы теперь живём в мире серверов с

Что такое случайность в компьютере? Как происходит генерация случайных чисел? В этой статье мы постарались дать простые ответы на эти вопросы.

В программном обеспечении, да и в технике в целом существует необходимость в воспроизводимой случайности: числа и картинки, которые кажутся случайными, на самом деле сгенерированы определённым алгоритмом. Это называется псевдослучайностью, и мы рассмотрим простые способы создания псевдослучайных чисел. В конце статьи мы сформулируем простую теорему для создания этих, казалось бы, случайных чисел.

Определение того, что именно является случайностью, может быть довольно сложной задачей. Существуют тесты (например, колмогоровская сложность), которые могут дать вам точное значение того, насколько случайна та или иная последовательность. Но мы не будем заморачиваться, а просто попробуем создать последовательность чисел, которые будут казаться несвязанными между собой.

Часто требуется не просто одно число, а несколько случайных чисел, генерируюемых непрерывно. Следовательно, учитывая начальное значение, нам нужно создать другие случайные числа. Это начальное значение называется семенем , и позже мы увидим, как его получить. А пока давайте сконцентрируемся на создании других случайных значений.

Создание случайных чисел из семени

Один из подходов может заключаться в том, чтобы применить какую-то безумную математическую формулу к семени, а затем исказить её настолько, что число на выходе будет казаться непредсказуемым, а после взять его как семя для следующей итерации. Вопрос только в том, как должна выглядеть эта функция искажения.

Давайте поэкспериментируем с этой идеей и посмотрим, куда она нас приведёт.

Функция искажения будет принимать одно значение, а возвращать другое. Назовём её R.

R(Input) -> Output

Если значение нашего семени 1, то R создаст ряд 1, 2, 3, 4, … Выглядит совсем не случайно, но мы дойдём до этого. Пусть теперь R добавляет константу вместо 1.

R (x ) = x + c

Если с равняется, например, 7, то мы получим ряд 1, 8, 15, 22, … Всё ещё не то. Очевидно, что мы упускаем то, что числа не должны только увеличиваться, они должны быть разбросаны по какому-то диапазону. Нам нужно, чтобы наша последовательность возвращалась в начало — круг из чисел!

Числовой круг

Посмотрим на циферблат часов: наш ряд начинается с 1 и идёт по кругу до 12. Но поскольку мы работаем с компьютером, пусть вместо 12 будет 0.

Теперь начиная с 1 снова будем прибавлять 7. Прогресс! Мы видим, что после 12 наш ряд начинает повторяться, независимо от того, с какого числа начать.

Здесь мы получаем очень важно свойство: если наш цикл состоит из n элементов, то максимальное число элементов, которые мы можем получить перед тем, как они начнут повторяться это n.

Теперь давайте переделаем функцию R так, чтобы она соответствовала нашей логике. Ограничить длину цикла можно с помощью оператора модуля или оператора остатка от деления.

R(x) = (x + c) % m

R (x ) = (x + c ) % m

На этом этапе вы можете заметить, что некоторые числа не подходят для c. Если c = 4, и мы начали с 1, наша последовательность была бы 1, 5, 9, 1, 5, 9, 1, 5, 9, … что нам конечно же не подходит, потому что эта последовательность абсолютно не случайная. Становится понятно, что числа, которые мы выбираем для длины цикла и длины прыжка должны быть связаны особым образом.

Если вы попробуете несколько разных значений, то сможете увидеть одно свойство: m и с должны быть взаимно простыми.

До сих пор мы делали «прыжки» за счёт добавления, но что если использовать умножение? Умножим х на константу a .

R(x) = (ax + c) % m

R (x ) = (ax + c ) % m

Свойства, которым должно подчиняться а, чтобы образовался полный цикл, немного более специфичны. Чтобы создать верный цикл:

  1. (а — 1) должно делиться на все простые множители m
  2. (а — 1) должно делиться на 4, если m делится на 4

Эти свойства вместе с правилом, что m и с должны быть взаимно простыми составляют теорему Халла-Добелла. Мы не будем рассматривать её доказательство, но если бы вы взяли кучу разных значений для разных констант, то могли бы прийти к тому же выводу.

Выбор семени

Настало время поговорить о самом интересном: выборе первоначального семени. Мы могли бы сделать его константой. Это может пригодиться в тех случаях, когда вам нужны случайные числа, но при этом нужно, чтобы при каждом запуске программы они были одинаковые. Например, создание одинаковой карты для каждой игры.

Еще один способ — это получать семя из нового источника каждый раз при запуске программы, как в системных часах. Это пригодится в случае, когда нужно общее рандомное число, как в программе с бросанием кубика.

Конечный результат

Когда мы применяем функцию к её результату несколько раз, мы получаем рекуррентное соотношение. Давайте запишем нашу формулу с использованием рекурсии.



Просмотров